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Abstract 

Many patients at high risk of life-threatening 
ventricular arrhythmias (VA) and sudden cardiac death 
(SCD) who received an implantable cardioverter 
defibrillator (ICD), never receive appropriate device 
therapy. The presence of fibrosis on LGE CMR imaging is 
shown to be associated with increased risk of VA. 
Therefore, there is a strong need for both automatic 
segmentation and quantification of cardiac fibrosis as well 
as better risk stratification for SCD. 

This study first presents a novel two-stage deep learning 
network for the segmentation of left ventricle myocardium 
and fibrosis on LGE CMR images. Secondly it aims to 
effectively predict device therapy in ICD patients by using 
a graph neural network approach which incorporates both 
myocardium and fibrosis features as well as the left 
ventricle geometry. 

Our segmentation network outperforms previous state-
of-the-art methods on 2D CMR data, reaching a Dice score 
of 0.82 and 0.77 on myocardium and fibrosis 
segmentation, respectively. The ICD therapy prediction 
network reaches an AUC of 0.60 while using only CMR 
data and outperforms baseline methods based on current 
guideline markers for ICD implantation. This work lays a 
strong basis for future research on improved risk 
stratification for VA and SCD. 
 

1. Introduction 

Sudden cardiac death (SCD) is a leading cause of 
mortality worldwide. SCD is usually caused by ventricular 
arrhythmia (VA) [1]. Effective prevention for VA is the 
implantation of an implantable cardioverter defibrillator 
(ICD). However, current guidelines for receiving an ICD 
lead to under- and overtreatment: many people suffer from 
VA and SCD, without meeting the criteria of receiving an 

ICD [1]. Conversely, 78-83% of the primary prevention 
ICD patients do not receive appropriate device therapy in 
the first four years after implantation [1].  

Prior studies demonstrated the presence of myocardial 
fibrosis on late gadolinium enhanced (LGE) cardiac 
magnetic resonance (CMR) imaging to be associated with 
high risk of VA [2]. Fibrosis segmentation in the left 
ventricle (LV) on LGE images is often done manually but 
that task is time-consuming and needs expert knowledge 
[3]. Therefore, there exists a strong need for automatic 
methods to segment fibrosis in the LV. Even though much 
previous work has been done on the automatic 
segmentation of fibrosis in CMR images, current state-of-
the-art results by Moccia and Zhang (MICCAI 2020 
EMIDEC challenge winner) only reach Dice scores of 
0.713 and 0.712 respectively [4], [5]. 

Over the last decade, many deep learning models have 
been proposed to solve a variety of medical tasks. 
However, the application of deep learning for the risk 
stratification of patients for developing VA has barely been 
investigated. Graph neural networks (GNNs) have shown 
promising results in several domains, including the 
medical domain, where the data can be naturally presented 
in the form of graphs, such as 3D mesh classification [6].  
As the shape and structure of the LV scar tissue is 
considered to be of importance for the development of VA 
events [7], GNNs show potential for the prediction of VA 
and SCD. 

The contribution of this work is therefore two-fold; 1) it 
presents a novel two-stage deep learning model, based on 
U-net, which can accurately segment fibrosis regions in the 
LV and 2) it introduces a GNN architecture which uses the 
myocardium and fibrosis segmentation for the prediction 
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of device therapy in ICD patients. To the best of our 
knowledge, this is the first study that directly uses fibrosis 
segmentation for the prediction of VA or ICD therapy in a 
deep learning setting. 
 

2. Methods 

2.1. Dataset 

This study made use of the DEEP RISK dataset. This 
dataset contains CMR images, ECG data as well as clinical 
variables of a cohort of 1,261 ICD patients which received 
an ICD between 2007 and 2017 [8]. For this research, short 
axis (SAX) LGE CMR images were used. All patients were 
included with a minimum of 7 SAX LGE CMR slices and 
CMR acquisition within 365 days before ICD 
implantation, which resulted in 515 patients which are used 
for the ICD therapy prediction. The patients were 
monitored during a mean follow-up time of 48.6±34.3 
months and outcome measures, including mortality and 
ICD device therapy, were reported. From the set of these 
515 patients, a random subset of 117 patients was sampled 
to use for fibrosis segmentation and their SAX LGE CMR 
2D slices were manually annotated. 

 

2.2. Segmentation models 

    For the segmentation process, a two stage U-net is 
proposed as previous work has shown that an initial 
segmentation of anatomical structure (myocardium in our 
case) seems essential for an accurate segmentation of 
fibrosis regions as it opposes a reliable initialization for the 
scar segmentation [9]. Therefore, our first U-net, named 
M-Unet, segments the myocardium from the raw 2D SAX 
LGE slices. It consists of a regular U-net structure with 
four down sampling (i.e., max pooling) operations in the 
encoder and four up sampling (i.e., deconvolutions) in the 
decoder part. The pixel-wise myocardium probability 
maps are then stacked with the SAX LGE images and used 
as input for the second U-net. In this way, the myocardium 
probability maps act as a location prior in which the 
fibrosis regions should be detected without introducing any 
manual annotations. The second U-net, named F-Unet, is 

designed and trained to segment the fibrosis regions. 
The stack of 2D SAX LGE images can be considered 

as pseudo 3D data as the voxel spacing is inconsistent 
between the in-plane and between planes. To both address 
this fact and utilize the 3D structure, we test three different 
types of models for the F-Unet: 

1. 2D F-Unet; This model consists of a regular 2D 
U-net, with almost the same architecture as the 
M-Unet. It takes as input the 2D SAX LGE slices 
and treats the independently. 

2. 2.5D F-Unet; This model takes the 2D F-Unet 
architecture and replaces the four 2D convolution 
operations in the ‘bottom’ of the U-net structure 
with 3D convolutions. 

3. 3D F-Unet; This model replaces all 2D 
convolution operations with 3D convolutions. 

Both the 2.5D and the 3D F-Unet take as input the 
complete stack of SAX LGE slices. 

 

2.3. ICD therapy classification models 

As studies have shown that LGE of myocardial fibrosis 
is a strong predictor of both VA risk and SCD, we propose 
a GNN model which incorporates both the myocardium 
and fibrosis segmentation features as well as the 3D 
structure of the LV for the prediction of ICD therapy. 

For every patient, a graph 𝐺 = (𝑉, 𝐸) consisting of 

nodes 𝑣𝑖 ∈ 𝑉 and edges 𝑒𝑖 ∈ 𝐸, is constructed by randomly 
sampling 100 fibrosis voxels based on the probability 
outputs of the F-Unet and 500 myocardium voxels based 
on the probability outputs of the M-Unet. Every node is 
connected to its 25 closest neighbouring nodes. 

Our GNN consists of five graph convolutional layers, 
based on equations 3, 5 and 6 from the E(n) equivariant 
graph neural network implementation [10], followed by a 
dense classification layer with 64 hidden units.. For the 
hidden representation of the nodes, two options are 
experimented with: 1) the voxel's output of the M-Unet 
model, named myo-GNN and 2) the voxel's output of the 
F-Unet model, named fib-GNN. The complete pipeline 
(from raw image, to segmentation, to prediction) can be 
viewed in Figure 1. 

Current guidelines for ICD implantation rely heavily on 

Figure 1: Complete architectural pipeline 
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the left ventricle ejection fraction (LVEF)[11]. In addition, 
studies have showed that the sole presence of LGE is a 
strong predictor of VA and SCD as well. Therefore, we 
would like to compare the effectiveness of our models to 
the ICD therapy predictions based on LVEF and LGE. Our 
GNN models are compared against two logistic regression 
baseline models which use only ‘LGE presence’ or 
‘LVEF’ as variables. 

 

2.4. Training details 

For the segmentation task, the dataset is split in training, 
validation and test sets (70/10/20%) and trained on the 
training set. The validation set is used for hyperparameter 
tuning, learning rate adaption and model selection. The test 
set is used to report final performance. 

The M-Unet is trained using a novel loss function: 

𝐿𝐴𝑊 = 1 − ((1 − 𝛼) ∙ 𝑠𝐷𝑖𝑐𝑒𝑚𝑦𝑜 + 𝛼 ∙ 𝑠𝐷𝑖𝑐𝑒𝑓𝑖𝑏) 
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where 𝑁 is the total number of pixels, 𝑀 is the number 

of fibrosis pixels, 𝑝𝑖 is the predicted myocardium 

probability for pixel 𝑖 (𝑝𝑖 ∈ [0,1]), 𝑡𝑖
(𝑚)

 is the ground truth 

myocardium mask value for pixel 𝑖 (𝑡𝑖
(𝑚)

∈ {0,1}) and 𝑡𝑖
(𝑓)

 

is the ground truth fibrosis mask value for pixel 𝑖 (𝑡𝑖
(𝑓)

∈
{0,1}). As alpha is increased during training, the model 
first focuses on getting the myocardium segmentation right 
and gradually starts paying more attention to the fibrotic 
regions which improves results for fibrosis segmentation. 

The F-Unets are trained using the regular smoothed 
Dice loss. 

For the classification task five-fold cross validation is 

used and the model is trained using the binary cross 
entropy loss function. 

 

3. Results 

3.1. Segmentation results 

Table 1: Results for the segmentation models. All results 
are averaged over 5 different seeds and the standard 
deviation is displayed in brackets. For the F-Unets, the 
highest score per metric is indicated in bold. 

Model Segmentation 
task 

DSC (sd) AHD (sd) 

2D M-Unet Myocardium 0.821 (0.005) 11.17 (0.73) 
2D F-Unet Fibrosis 0.752 (0.019) 23.15 (2.88) 
2.5D F-Unet Fibrosis 0.769 (0.009) 21.39 (1.20) 
3D F-Unet Fibrosis 0.723 (0.021) 27.94 (2.57) 

Table 1 shows the results for the segmentation tasks 
using the Dice similarity coefficient (DSC) and the average 
Hausdorff distance (AHD). The table shows that both the 
2D and the 2.5D F-Unet reach good scores with the 2.5D 
F-Unet slightly outperforming the 2D F-Unet. 

Figure 2 shows the segmentations in one slice for three 
different patients. Row A shows the patient with largest 
difference in predicted fibrosis volumes and ground truth 
fibrosis volumes. This example illustrates the overall trend 
that the 2D F-Unet is very dependent on the myocardium 
segmentations and has difficulties overcoming missed 
fibrosis spots by the M-Unet. The 2.5D and 3D U-net 
suffer less from this problem and can still detect fibrosis 
spots in areas that were not segmented by the M-Unet. 

The slices from patient B and C show good 
performance for all four models. They also show that the 
2.5D and 3D F-Unets have the tendency to oversegment 
while the 2D F-Unet often undersegments fibrosis. 

  

Figure 2: Segmentation examples for three different patients 
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3.2. ICD therapy prediction results 

Table 2: Results for the ICD therapy prediction in the 
complete follow-up period. The results are averaged using 
5-fold cross validation and the standard deviation is shown 
in brackets. 

Model AUC Accuracy 

Logistic regression (LGE) 0.549 (0.061) 0.410 (0.055) 
Logistic regression (LVEF) 0.501 (0.032) 0.464 (0.037) 
Myo-GNN 0.600 (0.055) 0.577 (0.035) 
Fib-GNN 0.567 (0.021) 0.478 (0.107) 

Table 2 shows the results for the ICD therapy prediction 
for both (baseline) logistic regression models as well as the 
two GNN models. The table shows the area under the 
receiver operating curve (AUC) and the accuracy. We can 
see that both GNN models outperform both logistic 
regression models. The logistic regression model based on 
LVEF performs very poorly. This is surprising as the 
LVEF is an important indicator for ICD implantation in 
current guidelines. We can see that the myo-GNN model 
performs best, reaching an AUC score of 0.600. 

 

4. Conclusions and discussion 

We conclude that our proposed LV fibrosis 
segmentation pipeline is fully automatic and has excellent 
performance. The DSC of 0.769 for the segmentation of 
fibrosis improve upon state-of-the-art 2D LV fibrosis 
segmentation scores by Moccia and Zhang [4], [5]. 

Secondly, this work introduced a novel technique that 
incorporates both myocardium and fibrosis segmentation 
features and the geometry of the LV using a GNN approach 
for the prediction of ICD therapy. Both proposed GNN 
methods outperform the two baseline methods of which 
one is based on LVEF which is an important indicator for 
ICD implantation in current guidelines. Besides, our myo-
GNN model slightly improves upon first results from the 
PROFID study (Dagres et al. Data presented at the 
European Heart Rhythm Association annual meeting 2022, 
Kopenhagen, Denmark) with an AUC of 0.598 for 
predicting SCD in ICD patients using clinical and 
biomarker characteristics as well as CMR data while our 
method solely relies on CMR data.  

However, the ICD therapy results are not yet suitable 
for clinical use and need to be improved. A promising step 
for improvement would be to combine the myocardium 
and fibrosis features with other clinical data, such as ECG 
and clinical variables, in a larger multimodal DL setting. 

 

Acknowledgments 

We acknowledge the DEEP RISK ICD study 
investigators: C. P Allaart, M.J.W. Götte, J.L. Selder, 
A.C.L. van der Lingen. 

This publication is part of the project DEEP RISK ICD 
(with project number 452019308) of the Rubicon research 

programme (personal grant F.V.Y.T) which is (partly) 
financed by the Dutch Research Council (NWO). This 
research is partly funded by the Amsterdam 
Cardiovascular Sciences (personal grant F.V.Y.T). 

 

References 

[1] A. S. Adabag, R. V. Luepker, V. L. Roger, and B. J. Gersh, 
“Sudden cardiac death: epidemiology and risk factors,” 
Nat Rev Cardiol, vol. 7, no. 4, pp. 216–225, Apr. 2010, 

[2] F. Leyva et al., “Myocardial Fibrosis Predicts Ventricular 
Arrhythmias and Sudden Death After Cardiac Electronic 
Device Implantation,” Journal of the American College of 
Cardiology, vol. 79, no. 7, pp. 665–678, Feb. 2022, 

[3] R. Karim et al., “Evaluation of state-of-the-art 
segmentation algorithms for left ventricle infarct from late 
Gadolinium enhancement MR images,” Med Image Anal, 
vol. 30, pp. 95–107, May 2016, 

[4] S. Moccia et al., “Development and testing of a deep 
learning-based strategy for scar segmentation on CMR-
LGE images,” Magn Reson Mater Phy, vol. 32, no. 2, pp. 
187–195, Apr. 2019, 

[5] Y. Zhang, “Cascaded convolutional neural network for 
automatic myocardial infarction segmentation from 
delayed-enhancement cardiac MRI,” in International 
Workshop on Statistical Atlases and Computational 
Models of the Heart, 2020, pp. 328–333. 

[6] D. Anand, S. Gadiya, and A. Sethi, “Histographs: graphs 
in histopathology,” in Medical Imaging 2020: Digital 
Pathology, Houston, United States, Mar. 2020, p. 23. 

[7] B. Ambale-Venkatesh et al., “Left ventricular shape 
predicts different types of cardiovascular events in the 
general population,” Heart, vol. 103, no. 7, pp. 499–507, 
Apr. 2017, 

[8] A.-L. C. J. van der Lingen et al., “The Benefit of 
Prophylactic Implantable Cardioverter Defibrillator 
Implantation in Asymptomatic Heart Failure Patients 
With a Reduced Ejection Fraction,” The American Journal 
of Cardiology, vol. 124, no. 4, pp. 560–566, Aug. 2019, 

[9] Y. Wu, Z. Tang, B. Li, D. Firmin, and G. Yang, “Recent 
Advances in Fibrosis and Scar Segmentation From 
Cardiac MRI: A State-of-the-Art Review and Future 
Perspectives,” Frontiers in Physiology, vol. 12, p. 1111, 
2021, 

[10] V. G. Satorras, E. Hoogeboom, and M. Welling, “E(n) 
Equivariant Graph Neural Networks,” in Proceedings of 
the 38th International Conference on Machine Learning, 
Jul. 2021, pp. 9323–9332. 

[11] S. G. Priori et al., “2015 ESC Guidelines for the 
management of patients with ventricular arrhythmias and 
the prevention of sudden cardiac death,” Eur Heart J, vol. 
36, no. 41, pp. 2793–2867, Nov. 2015, 

 
Address for correspondence: 
Dr. Fleur Tjong 
Dep. Cardiology 
Amsterdam UMC, Meibergdreef 9, Amsterdam 
f.v.tjong@amsterdamumc.nl 

Page 4


